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During the day, the shallower regions of a reservoir sidearm absorb more heat per
unit volume than the deeper parts, leading to a horizontal pressure gradient that
drives a circulation in the sidearm. At night, the shallow regions cool more rapidly,
leading to a circulation in the opposite direction. Since the spin-up time of a typical
sidearm is at least of the same order as a day, the flow within a diurnally forced
sidearm is principally an inertia-buoyancy balance. In this paper, a diurnally forced
sidearm is modelled by periodically forced natural convection in a triangular cavity.
The periodic forcing enters the model via an internal heating/cooling term in the
temperature equation. Reservoir sidearms typically have small bottom slopes and
this fact can be exploited to obtain asymptotic solutions of the resulting equations.
These solutions clearly demonstrate the transition from the viscous-dominated flow
in the shallows to the inertia-dominated flow in the deeper parts. In the inertia-
dominated region, the flow response significantly lags the forcing. Numerical
solutions of the full nonlinear problem are consistent with the asymptotic solutions.

1. Introduction

The understanding of the fluid mechanics of lakes and reservoirs has expanded
rapidly in recent years owing to the importance of fluid dynamical processes for
determining the quality of water supply. A recent review of dynamical processes
pertinent to lakes and reservoirs can be found in Imberger & Patterson (1990). In
particular, processes that give rise to horizontal rather than vertical transport of
water properties have received considerable recent attention. An example of a
limnological situation where horizontal processes play a part in the overall dynamics
is differential heating or cooling which occurs when neighbouring regions of the same
water body are heated or cooled relative to each other. This leads to a horizontal
pressure gradient due to thermal expansion that can drive a significant flow. The
flooding of a reservoir basin usually involves the inundation of many small valleys
around its perimeter. These flooded valleys (which are then called sidearms) are
typically only tens to hundreds of metres long and only a few metres deep where they
join the main body of the reservoir. Sidearms are often well protected from the wind
and so thermal forcing associated with heating and cooling is an important
mechanism for promoting exchange of water between the sidearm and the main body
of the reservoir.

During the day, the water column absorbs solar radiation according to Beer’s law
(see, for example, Kirk 1986); the intensity of the light decays exponentially with
depth and the rate of decay is a function of the wavelength of the light and the
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turbidity of the water. This leads to a shallow surface layer that can be several
degrees warmer than the underlying water. Near the shore, topographic effects
become important as the heat absorbed is distributed over a decreasing depth and
the water in the shallows becomes, on average, warmer than the deeper offshore
regions. As pointed out by Monismith, Imberger & Morrison (1990), this heating
mechanism leads to the temperature scaling with the inverse of the distance from the
shore, This temperature structure drives a surface outflow of warm water from the
edges of a reservoir sidearm. Flows due to this mechanism have been observed by
Adams & Wells (1984) and Monismith ef al. (1990) with measured velocities of the
order of 5 cm 571, These studies also indicated that the three-dimensional topography
of a reservoir sidearm leads to a complicated three-dimensional velocity and
temperature structure.

At night, surface cooling leads to a circulation in the opposite direction. Surface
cooling destabilizes the surface waters that have been stabilized during the day,
leading to a deeper surface mixed layer. This mixed layer is approximately
isothermal except near the edges of the sidearm where the local depth is less than
that of the mixed layer. In this region, heat loss occurs approximately uniformly over
the local depth but at a greater volumetric rate as the depth decreases since an
approximately constant surface flux is distributed over a decreasing depth. The
cooler water at the edges of the sidearm travels under gravity down the sloping
bottom away from the boundaries, setting up a circulation in the opposite direction
to the daytime circulation.

In the absence of wind or other momentum inputs, the flows described above can
be classified as natural convection, for which there is a large body of literature.
Natural convection in shallow cavities is the aspect most relevant to the geophysical
phenomena considered in this paper.

Sturm (1981) and Jain (1982) studied a cooling pond sidearm and their studies are
relevant to the present situation. In those papers, steady-state integral solutions for
heat and mass fluxes in idealized cooling pond sidearms were found which are
consistent with the experimental results of Brocard & Harleman (1980). Poulikakos
& Bejan (1983) found the steady-state flow and temperature strueture in an attic
space with a horizontal bottom and an arbitrarily shaped heated upper boundary
using asymptotic methods. In more directly geophysically motivated studies, Scott
& Imberger (1988) and Scott (1988) considered the steady-state flow in three-
dimensional cavities of arbitrary geometry which were used to model estuarine
dynamics. Those studies considered the steady-state density and flow structures in
two- and three-dimensional estuaries subject to a number of buoyancy and
momentum inputs, again using asymptotic methods.

All this work has been for steady-state conditions. However, Monismith et al.
(1990) show that the spin-up time for a typical sidearm is at least of the same order
as the period of the diurnal forcing which means that, at least in the deeper parts of
a sidearm, steady state is not achieved within one period of the diurnal cycle. This
was confirmed by the observations of Monismith ef al. where the night-time flow in
the sidearm did not reverse until about seven hours after the heat flux at the surface
had changed from cooling to heating. Consequently, the flow is intrinsically unsteady
and the transient behaviour must also be included in a model of sidearm behaviour,
at least for the diurnally forced case.

Patterson (1984) studied transient natural convection in an internally heated
rectangular cavity which was initially isothermal and at rest. he found that the
approach to steady state could be classified as either conductive, transitional or



Response of a reservoir sidearm to diurnal heating 145

convective depending on the value of the Grashof number Gr relative to combinations
of the aspect ratio of the cavity and the Prandtl number o = v/k of the fluid, where

Gr = g ATh? /2. (1)

In (1) and the definition of o, g is the acceleration due to gravity, « is the thermal
expansion coefficient, AT = @, hi®/v where @, is the magnitude of the volumetric
heating rate, [ is the length of the cavity, & is the height of the cavity, v is the
kinematic viscosity and « is the thermal diffusivity. The classifications could be
further divided into sub-classifications characterized by the relative magnitude of
various timescales of the flow and the nature of the internal balances at steady state.
In some cases, the approach to steady state was oscillatory, but in all cases it was
achieved in a timescale of A%/ which is just the time it takes for viscosity to diffuse
momentum across the depth of the cavity. For a reservoir sidearm, % is typically 5 m,
leading to a spin-up time of ~2.5x107s (& 250 days) for molecular viscosity or
~ 2.5x10°s (= 2.5 days) for a typical value of the eddy viscosity of 107 m?s™!.
Thus, even if the flow is turbulent, the spin-up time is comparable to the timescale
of the forcing and so, as already discussed, the flow in a typical sidearm is
intrinsically unsteady.

There are very few analytical or experimental studies aimed at understanding the
transient response of a cavity with sidearm geometry to thermal forcing. Patterson
(1987) numerically investigated the daytime circulation, assuming that the heat
input was uniformly distributed over the local depth in a triangular cavity. Further
assuming that the bottom of the model sidearm was perfectly reflective and the
bottom slope was small led to a horizontally linear internal heating source term. An
additional feature of this model was an adjustment of the mean heat input so the
system would reach steady state. The results of Patterson (1987) show that even
though the internal heating is vertically uniform, advection ultimately sets up a
strong stratification with horizontal isotherms in the majority of the cavity and
vertical isotherms occurring only in the shallow tip region.

Horsh & Stefan (1988) numerically studied the night-time cooling phase in a
triangular cavity with a fixed heat flux at the surface. They found that the flow
initially consisted of a number of recirculating regions associated with sinking
plumes of cooled surface water. At the same time, a gravity current of cold water
emerged from the tip and flowed down the sloping bottom in much the same manner
as the currents observed by Monismith ef al. (1990). After a sufficiently long time, the
gravity current ejected from the tip travelled the length of the flow domain and
Horsh & Stefan found that the recirculating regions coalesced as the gravity current
began to dominate the flow, ultimately leading to a single cell occupying the entire
cavity.

Despite the fact that the spin-up time for flow in a sidearm is of the same order as
the period of the forcing, there appear to be no analytical or experimental studies of
periodically forced natural convection in sidearm geometries. In the sidearm case,
the interaction between the timescales of the forcing and the timescales of the
response is of primary interest. The observations of Monismith et al. (1990) show that
the flow in a sidearm can significantly lag the forcing. The factors that determine this
lag and the influence it has on the flow structure within the sidearm are issues that
will be examined in this paper.
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2. Model formulation

The flow in a reservoir sidearm is modelled by the two-dimensional flow of a fluid
contained in the infinite wedge 0 < 2’ < —4a’, where z’ is the horizontal coordinate
measured from the tip and 2’ is the vertical coordinate measured positive upwards
from the upper boundary. Figure 1 shows the geometry of the flow domain. This flow
domain is the simplest possible that allows for a non-uniform depth. Although
Poulikakos & Bejan (1983) discuss the influence of a more general geometry in their
discussion of the fluid mechanics of an attic space, their solution is for the steady-
state problem with different boundary conditions and is not applicable here. In that
paper, 2 = —Az’ is replaced by z' = —Af(x’). However, as 40 only f(z") and
df(x’)/dx’" affect the flow. Specifically, f(x’) and df(x’)/dx’ only affect the magnitude
of the local horizontal pressure gradient (Poulikakos & Bejan 1983). Hence in this
paper, where only the 4 -»0 equations are solved, there is little to gain by having a
more general bottom shape.

Temperature differences in reservoir sidearms are typically small and so the
Boussinesq approximation for the density is appropriate. The diurnal forcing of
the flow is modelled by an internal heating and cooling term included in the temper-
ature equation. This term is formulated by distributing a surface heat flux of I = I
cos (2nt’ /P) Wm™? (where I, is the maximum heat flux, ¢’ is time and P is the period
of one day) uniformly over the local depth. This leads to a heat source/sink term in
the temperature equation of the form

T I, Pord! oY —1 ¢

Q) = o0, A7 G, a7 cos (2nt'/P)°C s (2)
The Az’ that appears in the denominator of @ is just the local depth over which the
heat flux has been distributed. In (2), p, is the reference density and (', is the specific
heat of water. The magnitude of ¢ increases towards =’ = 0. This will give rise to
larger temperature gradients there, consistent with field observations, The restriction
to a vertically uniform heating/cooling term in this model is a significant
simplification of the somewhat more complex heat input/output mechanisms
operating in a real sidearm. The model formulated in this paper is expected to be
relevant in the near-shore region where topography dominates. A more sophisticated
model for the thermal forcing would considerably complicate subsequent analysis
and involve extra parameters characterizing the type of forcing. It is for these
reasons that this work is restricted to a vertically uniform thermal foreing.

The non-dimensionalization of the resulting system of equations proceeds as
follows. There is a clear timescale for the flow given by P, the period of the forcing.
The assumed geometry of the flow domain imposes no natural lengthscale but there
is a vertical lengthscale (vP): where v is the viscosity of the water which, for
simplicity, is assumed to be constant. This lengthscale is just the distance over which
viscosity is able to act within one period of the forcing. This is the fundamental
lengthscale of the flow and it is used to non-dimensionalize the vertical coordinate.
The geometry of the flow domain then imposes a horizontal lengthscale
A~} (vP)t Balancing the unsteady term in the temperature equation with the internal
heating/ cooling term gives rise to a temperature perturbation scale of
I,P/(p,C, (vP)i). A balance between the vertical pressure gradient and buoyancy
yields a scale for the pressure which when balanced with horizontal shear yields the
horizontal velocity scale Agal,P?/(p,C,, (vP)i), where a is the coefficient of thermal
expansion. Finally, the continuity equation yields a vertical velocity scale
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Fiaure 1. Sketch of the geometry of the flow domain showing the origin of the coordinate
system at the tip of the wedge.

A*gad, P*/(p, P, (vP)?). Introducing a non-dimensional stream function i yields the
conservation of vorticity and heat equations

wtzz +A2¢t1:z +A2Gr(¢z I/fzzz - lﬁz lﬁzzz +4 2(%1 lﬁzzz - ]/fz wzzz))
= wzzzz + 2A21/fzzzz +A41//1zxz + Tx’ (3)

and oT/ot+ A*Gr(— o, T+ 4, T,) = (AT, +T,,)/ o+ cos (2rt) / z, 4)
with the boundary conditions

Yv=y,=0, T.=0 on z=0, (5)

y=y,=0, (I+AT,)/(1+A4% =0, on z= —z, (6)

and the initial conditions ¢y =T =0 at ¢ =0 where u = —%,, w=19, and all
variables are now non-dimensional, and the non-dimensional parameters for the
problem are the bottom slope 4, the Prandtl number o = v/x and Gr the Grashof
number which is now given by

_ god, P?

Cr
Po Op 14

The boundary conditions (5) and (6) arise from the assumptions that the upper
surface z = 0 is not deformed and is stress free, the sloping bottom boundary is rigid
and that all heat input/output in the system is included in the internal source/sink
term in (4). This last assumption leads to all boundaries being insulated. The system
of equations (3)—(6) is unsteady and nonlinear making a full analytical solution
difficult to obtain. In the next section, asymptotic solutions for the temperature and
velocity fields are found as the bottom slope 4 becomes small.

3. Asymptotic solution

The small parameter 4 appears as even powers in the boundary-value problem
(3)-(6). Following Cormack, Leal & Imberger (1974), the dependent variables are
expanded as a series in 4%:

T=TO94A427® + A4T® 4 | U=y O+ A%D + A4 D 4+ (7)
Substituting these expressions into (3) and (4) and equating like powers of 4 yields
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a system of linear partial differential equations that can, in principle, be solved
recursively. The general O(4") equations are (n even)

n—2
, — —ke— K —k—2
PRy +Gr X WP =Py
k=0

keven
n—4
+Gr D PP Y@ YU = YA WP YLD AT (8)
k=0
keven
and
n—2 1
TP+ Gr 3 [0 TE D 4y O T 2) = — (TR + TE) 48, c08 (2nt) /7 (9)
k=0
keven

with boundary conditions
YW =y® =0, T™=0 on z=0,
Y™ =y®M=0 on z= —uz,

(10)
n —
T;")-l' 2 (_1));/2 1324(10 - 1) (ﬂn_k)+T§cn_k_2)) =0 on z= —z,
k](c;gn o
and initial conditions
YW =Tm =0 at t=0 (11)
where quantities with negative superscripts are zero.
Only the 0(4°) equations are solved here and these are
Vi =y, +TP, (12)
TO® =T /o4 cos (2nt) /x (13)
with boundary conditions
YO =y9 =0, T"=0 on 2=0, (14)
YO =y =0, T®=0 on z= —z, (15)
and the initial conditions
YO =TO = at t=0. (16)

Thus, at zero order, the flow is set up in the following way. The fluid in the cavity
is differentially heated or cooled. This leads to a pressure field that drives a gentle
circulation. So gentle, in fact, that the background temperature field and the
resulting circulation are decoupled. The question of the validity of these asymptotic
equations is addressed later.

From (13), T can be obtained by direct integration to give

T® = sin (2nt)/2nx. (17)

Thus, as mentioned earlier, the main balance as 4 -> 0 is between the internal source
and the unsteady term. Because of this and the fact that horizontal conduction is an
0(4?) effect, the temperature is independent of the Prandtl number o. This
temperature structure varies with time representing the change in sign of the
horizontal gradient from day to night. The zero-order temperature solution (17) is
very simple but it still has some of the desired features that make it consistent with
observed sidearm temperature fields. In particular, the magnitude of the horizontal
gradient and 7@ increases as z—>0.
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Recall that the temperature source term in the zero-order temperature equation
(13) is cos (27t) /x so the temperature (17) lags the forcing by one quarter of a period.
This corresponds to 6 hours in the diurnal eycle. In other words, the horizontal
temperature gradient in a typical sidearm will not reverse until about 6 hours after
the net heat transfer into or out of the sidearm has changed sign.

Substituting for the horizontal temperature gradient yields the equation for

2 = Y2k, —sin (2mt) /2ma? (18)

with the boundary conditions (14) and (15).

The solution can be found by taking Laplace transforms in ¢, the details of which
are not included here. The solution for the horizontal velocity «® = —2y©® /232 is
given by

viscous response

\

1
Y- sin (21t)(z + x)(82% + zx — a®)

& 1

—2x Elm{(ﬂn cos (ﬂn z/x)_ﬂn COSﬂn)(%-F (COSﬂn— 1)/ﬂ${,)

- (ﬂn cos (ﬂn z/x)—SInﬂn)(l —Slnﬂn/ﬂn)}

Oz, 2, 1) = —

inertial response transient response
y {(ﬂn/x>2 cos (2nt) + 2msin <2nt)—(ﬂn/x>2exp<—<ﬂn/x>2t)} (19)
(Bn/)* + (2m)? ’

where £, are the non-zero positive roots of the equation sin g, = f, cos §,,.

4, Discussion of the asymptotic solution

Some of the components of the zero-order velocity (19) have been labelled to
identify the physical balance that gives rise to those components. The unlabelled
components in the summation term of (19) yield the vertical structure of the velocity.
The most important distinction to draw between the various components is between
the large-time periodic components and the transient components. Note that the size
of the domain is unlimited and so there is no upper bound on z. Also, the e-folding
time of the transient terms of (19) is

t, = (x/B,)* ~ 0.04952%. (20)

This means that for any finite value of ¢, there will always be a value of x for which
the transient terms are significant. However, for a finite x, there will be a time after
which the transient terms are negligible so it makes sense to refer to the transient and
large-time responses. The two regimes will be discussed separately though there are
many common features.

4.1 Large-time velocity behaviour

The large-time periodic behaviour of the velocity «® has two components: the
‘viscous response’ and the ‘inertial response’. The viscous response arises from an
internal balance between the horizontal pressure gradient and vertical shear. This
part of the solution dominates the inertial response as x— 0. This behaviour can be
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1.2

Fieureg 2. Contours of the large-time surface velocity in the (¢, x)-plane. The solid contour is the
zero contour and plots the position of an up/downwelling front that emerges from a2 = 0. The
contour interval is 1073,
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Ficure 3. Velocity profiles at « = 1 near the time that there is a reversal of the flow. The pressure
gradient reverses at { = 0.5. At { = 0.54, a three-layer structure in the flow is evident.

physically explained as follows. As the depth decreases, the time taken for viscosity
to act over the local depth decreases, that is, the flow develops more rapidly as
x> 0. In the limit as z >0, ‘¥ responds instantaneously to changes in the pressure
gradient which locks the phase of ® to that of the pressure gradient.

The inertial response arises from an internal balance between the inertia of the
fluid and the horizontal pressure gradient. Interpretation of this component is
complicated by the fact that even though the temporal behaviour of this term is
dominated by inertia, the actual velocity profile is governed by vertical shear. For
x > 1, this component dominates the viscous response and lags the pressure gradient
by one quarter of a period.
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F1cure 5. Contours of the surface velocity in the (¢, x)-plane for a few periods of the forcing
after its initiation. The solid contour is the zero contour. The contour interval is 2 x 10,

A summary of the large-time periodic behaviour of the velocity is shown in figure
2. In this figure, contours of the surface velocity »'?|,_, at large times are shown over
one and a quarter periods of the forcing. In this plot, ¢ = 0 corresponds to the reversal
of the temperature gradient from positive to negative and thus marks the beginning
of the daytime circulation pattern. The solid contour is the zero contour and thus
represents a point on the surface where the surface velocity changes sign. At this
point, the flow is either upwelling or downwelling depending on the sign of the
horizontal pressure gradient. If the flow is outwards at the surface near the tip
(corresponding to a negative horizontal pressure gradient) then the solid contour
plots the position of a downwelling front as it moves out from z = 0. The front
emerges from x = 0 as soon as there is a reversal of the pressure gradient, reflecting
the rapid response of the viscous-dominated flow there. As time increases, the front
moves outward, slowing briefly near x = 2 before moving rapidly off to x = o
precisely one quarter of a period after it emerged from x = 0. After the front has
moved off to x = oo the surface velocity has the same sign everywhere, meaning that
the circulation in the sidearm has been completely reversed by the reversed pressure
gradient. One quarter of a period after the front has moved off to « = 0, a new front
(with the opposite sign) emerges from z = 0 and exhibits the same behaviour.

Thus the large-time periodic behaviour of the velocity is characterized by an
up/downwelling front emerging from x = 0 every time there is a reversal of the
horizontal pressure gradient.

Figure 3 shows a series of velocity profiles at z = 1 near the time that there is a
reversal of the flow. Note that at ¢ = 0.52, the velocity profile is very close to the
classic cubic profile of Cormack, Stone & Leal (1975) for the flow in a shallow,
differentially heated rectangular cavity with a stress-free surface. In fact, the
component labelled the ‘viscous response’ in (19) is identical (up to a multiplicative
constant and a coordinate transformation) to that obtained by Cormack et al. (1975).
The pressure gradient reverses at ¢ = 0.5, when an (in this case) upwelling front
emerges from x = 0. The flow near z = —1 is the first to reverse. This is to be
expected since the flow near the rigid boundary is dominated by viscous effects
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(rather than inertia) and thus will respond more rapidly to the reversal of the
pressure gradient. As time increases, the horizontal pressure gradient overcomes the
inertia of the fluid and, combined with vertical shear, reverses the entire flow at
t = 0.55. Note that at t = 0.54, there is a three-layer velocity structure with outflow
both at the surface and near the bottom boundary.

The three-layer structure of the flow can clearly be seen in figure 4 where
streamlines are plotted for various times. The internal structure of the front can be
deduced from the position of the zero streamline, which is a dividing streamline ; this
streamline divides the flow into two regions circulating in opposite directions. The
front detaches from the sloping bottom z = —x at ¢t = 0 and moves into the interior
of the domain. The point where the front intersects the surface z = 0 corresponds to
the propagating fronts discussed previously. At { = 0.20, the two regions circulating
in opposite directions can be seen clearly. The front continues to move outwards as
time progresses, and at t = 0.25 the front has moved off to « = oo and the flow in the
sidearm has completely reversed. The flow continues to accelerate with the size of the
recirculating region evident at £ = 0.3 increasing, ultimately encompassing the entire
domain.

4.2. Transient velocity behaviour

The discrepancy in timescales for different values of z leads to an interesting
phenomenon in the transient flow that can be seen in figure 5. In this figure, contours
of the surface velocity u‘®|,_, are plotted in the (¢, z)-plane over several periods of the
forcing after the forcing is initiated. Thus, #® = 0 at ¢ = 0. The pressure gradient is
negative from ¢ =0 to 0.5 and the surface velocity is positive everywhere in this
region, indicating that there is a warm surface outflow. At { = 0.5, the pressure
gradient reverses and a weak upwelling front emerges from z = 0 in a similar way to
the fronts discussed previously. The front behaves slightly differently however as it
moves out more slowly and does not move off to # = co until { = 1.0 when there is
a reversal of the pressure gradient. Thus the front here is present for twice as long
as the fronts discussed in the previous section. This is because for # > 1 and small
times, viscosity is barely influencing the flow and the inertia gained by the fluid
between ¢ = 0 and 0.5 is only just overcome by the pressure gradient between { = 0.5
and 1.0. In the limit as x — o0, vertical shear has no effect on the flow and the flow
there will not be reversed. This means that the two zero contours asymptotically
approach each other. The fact that there is a change in sign of the surface velocity
just before ¢ = 1.0 reflects the small effect that viscosity has had up to that time.

Of particular interest here is that shortly after the pressure gradient reverses at
{ = 1.0 and a downwelling front moves out from z = 0, a short-lived upwelling front
moves in towards the tip from = c0. The two fronts meet nearx = 3at¢ = 1.17 and
cancel each other out. After the fronts have met, the circulation in the whole sidearm
is in one direction with a warm outflow at the surface. This curious sequence of events
is repeated one period later near ¢ = 2.0 with some modifications to the behaviour.
The downwelling front that emerges from x = 0 at ¢ = 1.5 moves off to £ = 00 more
rapidly than the front that appeared shortly after t = 0.5. Also, the front that
appears from z = 0 emerges a little later in the cycle. This leads to the two fronts
meeting further out near x = 4. Finally, it takes a little longer for the two fronts to
meet, which occurs at t & 2.2. This change in the behaviour reflects the increasing
importance of viscosity for > 1. As time increases, viscosity diffuses the effect of the
boundaries into the core region of the flow. Yet another period later, the same
sequence of events occurs with similar modifications.

The internal evolution of the two surface fronts is shown in figure 6 where
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Freure 7. Velocity profiles at # = 5 for a number of times just after the forcing
has been initiated.

streamlines are plotted for various times. The pressure gradient reversed at { = 1.00
and in the first plot, at ¢ = 1.10, only one front is evident which emerged from
x=0ati=1.00. At = 1.12, the second front that appeared from large x can be seen
at the right of the plot. As the two fronts move towards each other, the flow between
them is decelerating (¢ = 1.12-1.14) while the flow outside this region (x < 1 and
x » 1) is accelerating. These two regions have different internal balances. For x < 1,
the viscous-dominated flow there is responding rapidly to the increasing pressure
gradient. Thus the flow for z < 1 is accelerating because the pressure gradient is
increasing. For « > 1, even though the flow is dominated by inertia, the pressure
gradient does not have much inertia to overcome and has thus reversed rapidly. The
flow for > 1 is dominated by inertia and thus would accelerate even if the pressure
gradient was constant. At ¢ = 1.16, the fronts now form a closed streamline within
the flow. As time moves on (¢ = 1.16-1.18), the size of the closed-off region associated
with the closed streamline decreases as does the magnitude of the circulation within
it. At the same time, the magnitude of the circulation outside is increasing because
of the favourable pressure gradient At t= 1.20, the closed zero streamline has
vanished altogether and the remaining flow consists of two regions circulating in the
same direction. The flow continues to accelerate (t = 1.20-1.26) and the initially
distinct regions of circulating fluid slowly merge.

The internal velocity structure is characterized by an initial balance between
inertia and the horizontal pressure gradient. This balance is maintained until
viscosity has had sufficient time to diffuse the effect of the boundaries into the core
region of the flow. Figure 7 shows a series of velocity profiles at x = 5 for various
times after the forcing has been initiated. For small times, the flow away from the
boundaries is a linear function of z which reflects the fact that the effect of the
boundaries has not yet been felt by the core flow and the balance is between the
horizontal pressure gradient and inertia.

8 FLM 246
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4.3. Validity of the asymptotic solution

Because the 0(A°) temperature T? is singular at # = 0 and hence the horizontal
gradient of T is also singular, the range of validity of the asymptotic solution needs
to be addressed. It can be shown that u‘® has the following properties:

2 ® o 1/x as x— 00, 21)
xr as x— 0.

Now, the exact temperature equation is

0(4° 0(4°) 0(4°)
o 2 PP\ 4 aos (2nD Ta
T . or aoT\ 1( 0T T \+cos(2nt)/x

where it has been made explicit which terms are included in the O(4°) solution. Using
the O(A°) solution yields the following estimates for each of the terms in the above
equation:
T/dcl/x as x—0,00,
udT/0xc1/x as x—0,
o 1/a® as x>0,
ST foxt oc1/x® as x—>0, 00,

where the constant of proportionality will actually be a function of time, The
remaining terms (w7}, and 7,,) are identically zero at O(A%). The asymptotic solution
will give a reasonable solution as long as the terms that are not included in the O(A°)
equation are smaller than those that are included. This is certainly the case for
sufficiently large x. However, as x—0, the horizontal conduction term 7, is
proportional to 1/23 while the terms included in the O(A4°) equation are proportional
to 1/x. This means that no matter how small 4 is, there will always be some region
near the tip where the asymptotic solution will fail. The extent of the region will
depend on the value of A.

Even though the asymptotic solution fails near x = 0, the effect on the solution is
relatively minor. The failure arises because the zero-order equation does not include
horizontal conduction, which plays a dominating role for small x. The effect of
horizontal conduction is to reduce the magnitude of the horizontal temperature
gradients there. This in turn will lead to a reduction in the associated horizontal
velocity. Thus, the failure of the asymptotic solution in the tip will lead to an
overestimation of the velocities there. Again, the amount that the velocities are
overestimated by will depend on the value of 4.

(23)

5. Numerical simulation

The asymptotic solutions of this paper are only valid for 4 € 1 and moderate Gr
and do not provide insight into higher-order effects such as advection. The numerical
simulation that will be described in this paper has two aims. The first is to validate
the O(A°) solutions found earlier in this paper and the second is to provide some
insight into higher-order, particularly nonlinear, behaviour.

Owing to the difficulty of finding exact solutions for general natural convection
problems, there is a large body of literature devoted to numerically modelling
convective flows. A recent review of numerical methods applicable to convective
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flows can be found in Patankar (1988). The method used in this paper is adapted from
a method described by Armfield (1991) which includes a survey of more recent
numerical schemes.

The wedge-shaped geometry of the flow domain suggests formulating the problem
in polar coordinates. For the analytical problem considered in §§2—4, there is no
advantage in using polar coordinates. However there are considerable numerical
advantages associated with having the boundaries of the flow domain lying on
coordinate lines. The equations of motion become, after using the non-dim-
ensionalization scheme described above with r and 6 scaling with 47" (»P): and A
respectively,

%7;+A2G( 2“ ! 2;) A4G— = 2_1:
+A2%§;(72—7:) ,«_122-201;_ 2;2-2-2—1;—‘427—1211,+%Tsin‘4(0—1), (24)
+42 i;r(raw) %%%“24%%—‘4 lw+A2TcosA(0 1), (25)
151( Wt gy = @)

where all quantities are non-dimensional, r is the radial coordinate, § is the angle
measured anticlockwise from the bottom boundary, « is the radial velocity, w is the
tangential velocity, p is pressure, 7 is the temperature and Gr is defined by (6). The
solution domain is now 7, <r <rp.. and 0 < § < 1. The upper limit on » must be
chosen so that there is a significant part of the flow not affected by the presence of
the endwall at r = r,, which is absent for the asymptotic solutions found in §4.
Setting ., = 10 is sufficient to ensure that there is a substantial region of the flow
not affected by the endwall whilst ensuring that the domain does not become too
large to be feasibly simulated. At the tip, 7., is chosen so that it lies within the
conduction-dominated regime where the velocities are small. Setting r;, = 0.1 is
sufficient to ensure that the boundary there does not have a significant effect on the
temperature and flow dynamics.

The primary aim here is to compare the numerical and asymptotic solutions.
However, the numerical model is restricted to a finite domain while the model
formulated in §2 is not. Also, the numerical model includes a boundary at
7 = Tmin > 0 which is absent in the analytical model. Thus there are extra boundary
conditions that need to be formulated besides those that arise naturally from the
analytical model.

The heat flow in the tip region is dominated by conduction, thus the boundary
condition chosen here for the temperature is simply that the temperature gradient at
7 = Tin Matches that of the asymptotic solution, that is

oT sin (2mt)
or 2nr? cos A(0—1) on 7= Tmin (28)

6-2
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10 }

Ficurg 8. Contour plot of the numerically calculated surface velocity in the (¢, z)-plane with
A = 0.02, Gr = 5x10* and ¢ = 7.5. The contour interval is 1073,

The position of the boundary at » = r,,, is chosen so that it has a small influence on
the velocity and temperature fields in the bulk of the sidearm. For simplicity, the
boundary condition here for the temperature is

oT/or =0 on r=ry,,. (29)

The boundaries at r = rp;, and r =r,,, are assumed to be solid, leading to the
velocity boundary conditions

u=w=0 on 7‘=’l‘min,} (30)
u=w=0 on r=rg,,.
The boundary conditions on the remaining boundaries follow from §2 and are
0T/30 = du/dd =w=0 on 6= 1,}
T/ =u=w=0 on 6=0.
The scheme used for numerically simulating the above system of equations is a
modified version of a scheme developed by Armfield (1991). Essentially, the method
is a SIMPLE type scheme applied on a non-staggered grid with QUICK correction for
the convective terms. A detailed description of the stMPLE scheme and some of the
early modifications can be found in Patankar (1980). The approximate pressure
equation is formulated so that the scheme is elliptic (Armfield 1991). The
computational domain is discretized used a 41 X 33 non-uniform grid. A small time
step of 107? is required to resolve the rapid flow development in the tip.

(31)

5.1 Results and discussion

The simulation reported here is for the transient part of the flow as computational
restraints did not allow the simulation to run to the large-time periodic behaviour
discussed in §4.1. Thus, this simulation is restricted to two periods of the forcing after
it has been initiated. The values of the non-dimensional parameters used for this
simulation are 4 = 0.02, ¢ = 7.5 and Gr = 5% 10*. For these values of the non-
dimensional parameters and using the O(4°) solution to estimate the size of u, the
ratio of the unsteady inertia term to the horizontal advection term in the radial
momentum equation is approximately 10. This suggests that for these values of the
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10

FicurE 9. Contour plot of the agymptotic surface velocity in the (¢, z)-plane.
The contour interval is 1072,
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F1gure 10. Comparison between the numerical (solid lines) and asymptotic (dashed lines)
velocity profiles at z = 5 for various times including the initial inertia-dominated regime.

non-dimensional parameters, nonlinear effects are small, but not negligible, and so
this simulation provides an opportunity to validate the asymptotic solutions found
in §4 and to examine the effect that a small amount of advection has on the
dynamics, and is also close to the value for GrA? above which the asymptotic
solutions fail. As before, the time-dependent behaviour is summarized by a contour
plot of the surface velocity in the (¢, x)-plane. Figure 8 shows such a plot using data
from the simulation. Figure 9 shows the corresponding plot using the asymptotic
solution. Within the interior of the computational domain, the agreement between
the two plots is quite good. The numerical velocities are slightly smaller than the
analytical solution as can be seen in figure 10. This is due to the small effect that
horizontal diffusion has had on the temperature field. This overestimation of the
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velocities by the asymptotic solution was discussed in §4 and is due to the absence
of horizontal conduction of heat in the O(4°) equations. Another less significant effect
that contributes to the difference is horizontal advection. Even though the nonlinear
effects are small, advection of heat reduces the size of the horizontal pressure
gradient slightly. There is some discrepancy between the results near x = 11 where
the solid boundary that is absent in the asymptotic solutions is influencing the flow.
The effect of the boundary at z = 11 is restricted to O(4) of the domain. Of particular
interest is the position and time of appearance of the up/downwelling fronts
discussed in §5 about which the numerical and asymptotic solutions are in excellent
agreement.

Figure 10 shows a comparison between the numerical and asymptotic solutions for
the velocity profiles at various times at x = 5. Again, there is good agreement
between the two solutions with the asymptotic velocities being slightly larger. The
values of x and ¢ chosen include the initial inertial regime where the profiles are nearly
linear as well as the later viscous regime where the profiles are closer to cubic.

6. Concluding remarks

The model proposed and asymptotically solved in this paper is a limited
representation of the true geophysical situation. Despite this, a comparison between
the results of this paper and available field data is useful. The dimensional velocity
in this paper is given by

, _ Agal,P?

U =————u. (32)
po Uy, (VP):

Using the parameter values I, = 10 Wm?® and 4 = 0.02 from Monismith et al. (1990)
and the usual values for the other parameters yields a velocity of 5 cm s™! for a
typical value of v of 107* m s7%. The drogue measurements of Monismith et al. yielded
a peak velocity of 7.5 cm s™' while the measurements of Adams & Wells (1984)
yielded velocities up to 15 em s™'. Thus, the magnitude of the velocities predicted by
this model are consistent with those measured in the field. Monismith et al. observe
that the lag between a reversal of the forcing and a reversal of the flow within a
sidearm can be longer than the 6 hours suggested by the large-time response
considered in §4.1. However the discussion in §4.2 shows that even when the forcing
is periodic, the lag can be up to 12 hours if the transient effects are taken into
account. In particular, if the magnitude of the, say, daytime foreing is less than that
of the previous night’s forcing then it will take longer for the weaker forcing to
overcome the night-time flow. Thus it would appear that the model considered in this
paper has captured much of the bulk flow dynamics of a periodically forced reservoir
sidearm.

The authors are grateful to Greg Ivey, Kreshimir Zic and the anonymous reviewers
for valuable comments on earlier drafts of this paper. This research was carried out
while one of us (D.¥'.) was a recipient of an Australian Postgraduate Research Award
along with a Centre for Water Research Scholarship.
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